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A statistical approach for modeling fracture in brittle materials is presented. In particular, a
microstructural-based finite element code called OOF is used in conjunction with a
stochastic representation of failure that relies on the Weibull law. The OOF code, which
maps materials microstructures onto finite element meshes, enables to calculate the local
stress states; these stresses are used along with the statistical criterion for brittle fracture in
order to determine microcrack formation and propagation. Computer simulations are
performed on several microstructures of different materials types, e.g., laminates,
particulate composites and polycrystals. The damage accumulation due to microcracking is
characterized by the stereological measure of failed material and is investigated in order to
assess the effect of microstructural features on the failure mechanism. Moreover, the
approach allows to analyze the influence of the characteristic parameters for brittle
materials on damage evolution. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Materials used in engineering applications often have
complex microstructures or composite architectures de-
signed to enhance macroscopic properties. Require-
ments for mechanically reliable and damage-tolerant
devices have stimulated the investigation of compos-
ite materials and heterogeneous microstructures that
increase fracture energies by spatially distributing
damage. The accumulation of damage in a composite
or a microstructure has stochastic aspects associated
with distribution of defects within phases or interfaces.
Damage accumulation also has deterministic aspects
associated with distribution of stress within a material
as a function of loading, material geometry, and the spa-
tial distribution of elastic properties. However, when
considering similar materials, stochastic effects appear
for a given load and geometry because of the large
variety of spatial elastic property distributions within a
set of “similar” microstructures or because composite
processing uncertainties also produce micromechanical
variability.

Local microstructural features can affect macro-
scopic mechanical response to a prescribed loading
condition, especially with regard to mechanical reli-
ability. Damage accumulation in a matrix, inclusions,
or at their interface, in the case of matrix-reinforcement
debonding, is strongly affected by microstructural size
scales and topology (e.g., inclusion shape, size and
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volume fraction). Predictive micromechanical models
that incorporate microstructural details will foster the
design of optimal microstructures in complex materi-
als. Ensuing models that treat stochastic aspects of mi-
crostructures will provide means to assess the reliability
of designed microstructures.

In this paper, we describe a method that directly in-
corporates microstructural features and indirectly treats
the statistical aspects of damage accumulation through
parameters that define a failure probability that depends
on localized microstructural stresses. The method is
combined with public domain software, OOF [1] and
serves as a means to gain insight of the role that mi-
crostructure plays in reliability. To establish the mi-
crostructural role, several prototypical microstructural
case studies are presented below.

One existing method for calculating microstructural
stresses, the unit cell method, is based on the assump-
tion that a representative volume element (RVE) can
be used to represent the mean behavior for an entire
microstructure. The RVE method may suffice for pre-
dictions of linear properties or the occurrence of first
failures, but it is not able to account for effects due to
microstructural variability or correlated failure events.
It is questionable whether the RVE method can be suc-
cessfully extended to heterogenous materials and com-
plex microstructures. Moreover, it is difficult to define
an appropriate RVE to treat inhomogeneous materials.
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Alternative approaches have been proposed to
account for microstructural heterogeneity and random-
ness. Ghosh, Lee and coworkers developed a multi-
level computational model for multi-scale damage
analysis [2]. This approach performs both the macro-
scopic analysis with a conventional FEM code and the
microscopic analysis by using the Voronoi Cell Finite
Element Method (VCFEM). This model is able to track
the incidence and propagation of microstructural dam-
age in composites and has been tested for different
heterogeneous microstructures. The same authors ap-
plied VCFEM to a variety of microstructural classes
such as composites and porous microstructures [3–5],
composites of ductile matrix with brittle elastic inclu-
sions [6, 7]. Stochastic models were introduced in an
extension of the VCFEM model in which discretely re-
inforced materials were analyzed with a Weibull distri-
bution to account for the size effect in particle cracking
and hence flaw size and distribution [8]. Experimental
data were combined with a computational approach to
develop a damage evolution technique that was applied
to microscopic damage within SiC particle reinforced
aluminum alloys [9]. Three dimensional modeling and
characterization of particle reinforced matrix compos-
ites was developed by the same group [10, 11]. The
authors demonstrated that it was possible to charac-
terize damage as a function of stereological measures,
i.e., for materials with different volume fractions and
reinforcing particle size.

Other groups have investigated microstructural
effects on brittle materials behavior. Zavattieri et al.
studied polycrystalline ceramic microstructures by sim-
ulating microcracking at grain boundaries and pre-
sented a micromechanical model that accounts for inter-
face parameters, grain size and grain morphology [12].
Zhao and Yu presented a model for damage of materi-
als combining macroscopic mechanical properties with
microstructural parameters [13]. Fischer-Cripps used a
finite element method to calculate the indentation re-
sponse of a mica-containing glass-ceramic: the finite
element modeling is performed at the microscale in or-
der to assess the connection between the macroscopic
behavior of the material and damage events on a mi-
crostructural scale [14]. Fitoussi et al. investigated the
damage mechanism for SMC composites, introducing
into the micromechanical model a local interface failure
criterion [15]. Landis et al. investigated the strength dis-
tributions of unidirectionally reinforced fiber compos-
ites with a micromechanical model and Weibull statis-
tics as a function of fiber strength [16].

In this paper, we develop a method to investigate
the effects of microstructure, statistics, and stress-flaw
correlations for accumulating damage in brittle mate-
rials. Our method couples a finite element approach
that directly derive from microstructures with a stochas-
tic criterion for brittle fracture. Previously, we utilized
two methods to evaluate probability of first failure in
complex microstructures [17]. These methods relied on
assumption of linear elasticity and a Weibull model for
the local probability of failure determined by the indi-
vidual properties of the microstructural constituents or
features. The methods allowed the determination of the

reliability of a perfectly brittle microstructure. In this
paper, we extend the model to damage accumulation.
Our method extends an object-oriented microscale fi-
nite element analysis (OOF) and allows determination
of evolution of the complex stress state in heteroge-
neous material with gradually failing components. This
tool is used in conjunction with the Weibull law for brit-
tle fracture, in order to track the incidence and propaga-
tion of microstructural damage. This approach allows
investigation of arbitrary microstructures of complex
materials. The paper describes this technique which
provides a method for analysis of heterogeneous struc-
tures undergoing damage in two-dimensional represen-
tations of real microstructures.

2. Method
We represent a microstructure as a finite element model
with mesh properties that derive from a two dimen-
sional image. Stochastic behavior is incorporated into
each element through a probabilistic failure model that
depends on element type and on local stress conditions.
In this paper, we employ a local Weibull model for se-
quential element failure and a finite element analysis is
performed via OOF [1], an image based computational
tool. In fact, real microstructure images of selected ma-
terials may be digitized and used as input for the pre-
processor, PPM2OOF. This preprocessor is able to map
materials micrographs onto finite element meshes that
can be refined as appropriate. Materials properties are
defined, inside the preprocessor, corresponding to the
different parts of the image. PPM2OOF creates trian-
gular elements for which local materials properties can
be used for adaptive mesh refinement. OOF performs a
finite element solution for user-specified loading con-
ditions for meshes that are produced by PPM2OOF. In
such a way, the “actual” microstructure of a material
is analyzed through its image and the effect of particu-
lar microstructural features can be analyzed from their
macroscopic response. We extend OOF to probabilistic
models of sequential failure in quasi-brittle materials
(i.e., those that can sustain sequential, but limited, fail-
ure from isolated defects).

OOF has been adopted to model microstructural ef-
fects on residual stress distribution, damage and frac-
ture in several different materials classes, including
composites. For example, it has been utilized to deter-
mine residual stresses in plasma-sprayed thermal bar-
rier coatings [18, 19], to study the effect of interface
properties on microcracking of iron titanate [20] and
the stresses in aluminum-silicon alloys [21]. Moreover,
the code was employed to determine residual stress
distributions in ceramics caused by thermal expansion
anisotropy, using polycrystalline alumina as a model
system [22] and the fracture of a textured anisotropic ce-
ramic [23] and to predict residual stresses in polycrys-
talline alumina and spontaneous microcracking upon
cooling from the processing temperature [24]. Hsueh
et al. studied the stress transfer in platelet-reinforced
composites by considering a two-dimensional model
system constituted of an elongated platelet embed-
ded in a matrix [25]. Other brittle matrix composites
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were investigated [26–28] . Cannillo and Carter [17]
adopted OOF to determine reliability of composite mi-
crostructures, by including both effects of microstruc-
tural heterogeneity and of arbitrary loading conditions.
Zimmerman et al. [29] examined damage evolution dur-
ing microcracking due to thermal expansion and elastic
anisotropy in random polycrystalline microstructures.
The authors adopted the Griffith criterion to describe
failure and damage accumulation due to microcracking
of brittle materials.

In this paper, we extend the analysis to reliability and
damage accumulation in complex microstructures of
brittle materials by introducing a stochastic approach as
a failure criterion. Observations of failures from speci-
mens of nominally the same material show that failure
strengths are distributed for identical specimen geome-
tries. The distribution of failure strengths derives from
microstructural variations and from distributions in the
size and spatial arrangement of defects. Material reli-
ability can be characterized with a failure probability,
rather than with a single average strength. The fail-
ure probability is empirically related to the specimen
volume and the stress state in the specimen. A widely
used model of probabilistic failure is the well-known
Weibull’s equation [30]

P(σ, �V ; σ◦, m, V◦) = 1 − exp

[
−

(
σ

σ◦

)m
�V

V◦

]
(1)

that correlates the probability of failure to the stress
state σ in a volume �V and to two Weibull parameters
(a shape factor m and a scale parameter σ◦). Equation
1 is incorporated into a new OOF element that fails (by
reducing element stiffness in the direction of maximum
tensile load) with probability P in an element of size
�V .

An image of a microstructure in the form of a two-
dimensional array of pixels, obtained either by scanning
a micrograph or through a microstructural simulation
algorithm, is taken as input to PPM2OOF. Reliability
parameters (i.e., m and σ◦) and thermoelastic proper-
ties (e.g., Young’s modulus, thermal expansion tensor,
etc.) are specified with user-identified regions in the im-
age. A two-dimensional triangular finite element mesh
is generated from the specified underlying image prop-
erties. The mesh is adaptive and can automatically re-
fine itself in subregions where the underlying properties
change at a fine scale, or where large gradients develop
in the stress or strain—such as at interfaces that sepa-
rate regions with differing properties. A microstructure
is thus generated from an image and local properties are
mapped onto a set of finite elements where each element
ei has thermoelastic properties and Weibull moduli mi

and σoi inherited from its location on an image. Each
element, ei , has an area �Ai that is used to determine
the volume �Vi in Equation 1 through a characteristic
thickness w: �Vi = w�Ai .

The microstructure’s reliability is simulated with
Monte Carlo processes that utilize a discrete represen-
tation of Equation 1 and local stresses to “fracture”
elements sequentially. The microstructural grid is an-
alyzed with finite element solver (OOF) and discrete

approximations to the stress and strain fields are cal-
culated for a specified loading condition, L . A fail-
ure probability Pfail i (L) is computed in every element
from equation 1, using the maximum principal stress as
σ [17]. Each element is randomly assigned a test prob-
ability Ptest i from a uniform distribution in the interval
[0, 1]. An element, ei , fractures if Pfail i(L) > Ptest i. El-
ement fracture is simulated by an anisotropic reduction
of the stiffness tensor—the tensor is rotated so that one
direction is coincident with the direction of maximum
principle stress and the components stiffness values in
that direction are reduced by two orders of magnitude
and all other values are reduced by knockdown param-
eter set to 1/5.

Damage is accumulated during the sequential Monte
Carlo/FEM process. As local damage occurs at a load L ,
a new equilibrium stress state and a new set of Pfail i(L)
are computed. Local failures tend to redistribute stress
to neighboring elements. Other failures may occur due
to this stress redistribution, and if so other elements fail
and the process is iterated until no more failures occur
at L .

In this way, it is possible to determine the locations
and correlations of first, second, third, and subsequent
failures. This approach simulates damage evolution and
its direct relation to microstructure. Moreover, it is pos-
sible to study the effect of the characteristic parameters
for brittle materials, such as the Weibull moduli, with
damage evolution.

It is worth observing that the method presumes that
the Weibull moduli may be applied discretely to small
uniform elements in a microstructure. Thus, it is implic-
itly assumed that sub-microscopic flaws are distributed
within each finite element, i.e., the finite element dis-
cretization is coarse enough to average over a distribu-
tion of pre-existing flaws which are very small com-
pared to the characteristic element size.

A Weibull model is usually employed for the
probability of first failure and would therefore be an
appropriate choice for weakest link failure of a material
specimen. In this study, the Weibull distribution is
employed for damage accumulation as a matter of
convenience and comparison to experiments in quasi-
brittle materials. Using the same Monte Carlo scheme,
differing probability distributions (that depend on local
elastic field conditions) could be easily substituted for
Equation 1. Which probability distribution and meth-
ods for its empirical determination could be examined
by extension of the method described in this paper.

It should be noted that the Griffith condition of crack
growth based on the global energy balance is not neces-
sarily satisfied by a damage event. Enforcing the Grif-
fith criterion has not been done in this work and remains
a topic for future modeling.1

Moreover, as regards fracture initiation, it is assumed
that there is an existing unknown distribution of flaws
in each element. As described, using a Monte Carlo
process, an element may fail following Weibull statis-
tics. Therefore, cracks are forced to initiate in terms
of a prescribed length defined by the element length.

1 The authors are grateful to a reviewer of this manuscript for this
suggestion.
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Figure 1 (a) The onset of critical damage in a homogeneous specimen,
with Weibull modulus m = 25. The mesh is uniformly triangular. (b)
The first failures in a homogeneous specimen, with Weibull modulus
m = 5 illustrating the distribution of damage associated with smaller
values of Weibull modulus.

The use of an atomistic approach to describe fracture
initiation could be an extension of the present work.

2.1. Effect of Weibull parameters on
damage evolution in monolithic
structures

To gain an understanding of the role of m and σ◦ in
damage evolution, the trivial case of a uniform mate-
rial that can be characterized by a single Weibull law is
considered. The simulation of such a monolithic mate-
rial would apply to the case of an amorphous material
without an intrinsic length scale—and may apply to a
material with a microstructure that is considered homo-
geneous at the length scale of the finite element mesh.
In the latter case, the critical load Lc at which a cluster
of failed elements suffice to propagate across an entire

Figure 2 Distribution of distances of second failures from first (normal-
ized by the element length) for m = 25 and m = 5.

mesh could be used as a means to determine the particu-
lar Weibull moduli as a function of specimen geometry
and loading. A method of homogenizing a microstruc-
ture’s reliability characteristics is one purpose of this
paper and is described in the following sections.

A homogeneous specimen is considered with the
following thermoelastic properties: E = 150 GPa,
ν = 0.25, m = 25, σ◦ = 0.1 GPa, assuming that
the Weibull moduli are the same in each element of the
mesh. The sample is loaded in a uniform stress state by
application of a fixed strain with no shear components
at the “grips.” The stress field is computed under plane
stress conditions and subjected to the Monte Carlo pro-
cess described above. The sequence of elements failing
simulates crack propagation in the sample, and, as il-
lustrated in Fig. 1a, subsequent failures are highly cor-
related, i.e., an element breaking is likely to be close to
one that failed in the previous iteration.

The same experiment is then repeated for a sample
with the same thermoelastic and fracture properties, but
a Weibull modulus of 5. Failures, as reported in Fig. 1b,
are much less correlated than in the previous case. These
computations illustrate how the Weibull modulus m af-
fects fracture (or local correlation) behavior of the ma-
terial. The numerical experiments can be repeated to
obtain a distribution of fracture behaviors for a fixed
Weibull parameter. In Fig. 2 these distributions are il-
lustrated, as obtained with 100 cases. While for m = 25
the failures are highly correlated, i.e., a second failure is
likely to occur next to the first one, for m = 5 the frac-
ture events are much more dispersed. This confirms that
the value of m has a strong influence on the correlation
of subsequent failures and the distance between them.

To gain a deeper insight into the role of the m pa-
rameter, different specimen characterized by values of
m equal to 2, 5, 10, 15, 20 and 25 respectively are con-
sidered and the average distance of the second failure
from the first one is calculated over 100 samples for
each case. Fig. 3 illustrates that this distance decreases
with increasing Weibull moduli, i.e. the events are more
correlated with high values of m. Similar behavior is
then found for the distances of the subsequent failures
(third to second, fourth to third, (i + 1)th to i th).
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Figure 3 Distribution of distances of second failures from first (normal-
ized by the element length) and standard deviations as obtained with
100 experiments for m = 2, 5, 10, 15, 20, 25. The standard deviation is
appropriate for a normal distibution. As the average distance must be
positive, the distribution cannot be normal and thus the deviations are
more meaningful at smaller values of m.

Figure 4 Evolution of the damage parameter for different values of m.

The Weibull moduli of brittle materials such as ce-
ramics are known to display a large range of values
(typically m ∈ (2, 30)) [31–35]. Furthermore, m may
depend on the test method [36]. The range of values of
Weibull modulus in Fig. 3 and the associated correla-
tive behavior thus spans the expected behaviors of real
materials.

2.2. Damage accumulation
To quantify the microstructural damage accumulation,
we introduce a damage parameter

d = area of cracked elements

total area
(2)

This parameter can be calculated and plotted for sam-
ples with different values of m as a function of the
applied strain (or load). In a preliminary study, var-
ious fixed strain increments �ε were used to deter-
mine a strain increment that is small enough to al-

Figure 5 Damage parameter for different discretizations.

low enough data to be obtained before critical failure
(i.e., one or few element failures per strain increment)
and thus allow determination of damage accumulation
curve’s shape. This increment is used in the rest of the
paper.

In Fig. 4 the damage parameter is plotted as a func-
tion of applied strain, for three different simulations
corresponding to values of m equal to 2, 5, 25. As can
be inferred from the picture, damage progresses stably
for low values of m. However, for large values of m
there is an onset of critical damage levels over a narrow
range of strains near the characteristic stress σ◦. The
damage curve becomes more non-linear with increase
of m.

Thus, the Weibull modulus plays a critical role in de-
termining the rate of damage. If m → 2 the fraction
of cracked material depends weakly on applied stress.
Otherwise, if m → ∞ the damage parameter would
remain zero until the average stress reaches σ◦ [38]. In
fact, the Weibull parameter σ◦ determines the critical
load at which the sample is likely to fail: σ◦ strongly cor-
relates with the strain at which the damage parameter
increases rapidly, and becomes singular as m increases.

For the initial (i.e., with no failed elements) homoge-
neous sample, the elastic solution is insensitive to mesh
refinement.2 However, because each failed element oc-
cupies a finite region, the progression of damage will
be sensitive to discretization. To investigate the effects
of discretization length scale on the Monte Carlo algo-
rithm, a homogeneous sample is considered and three
different discretizations are analyzed: meshes of 10 ×
10, 20 × 20 and 40 × 40 elements (Fig. 5). For each
mesh, 20 runs were performed and damage curves were
recorded. Average damage curves were then calculated
over 20 runs for each discretization. Fig. 5 illustrates
that the results are consistent for finer discretizations
(20 × 20 and 40 × 40), and the damage parameter
seems sensitive to discretization if mesh is coarse (10 ×
10).

2 If the microstructure has a characteristic length scale, then the elastic
solution would depend on mesh size. This effect is considered below.
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3. Case studies
The combined FEM-Monte Carlo reliability and dam-
age accumulation method described above is applied
to three prototypical two-dimensional microstructures:
laminated composites, single-phase polycrystals, and
particulate composites.

The results obtained for laminated composites (bi-
layers of two homogeneous materials with differing
elastic and intrinsic reliability characteristics) demon-
strate a homogenization method for a material with
anisotropic reliability characteristics with underlying
orthorhombic symmetry with respect to loading axes.
The homogenization results in a model of a single phase
material that has orientation dependent reliability.

The results of this anisotropic homogenization are
applied to a case of single phase two-dimensional poly-
crystal where the orientation of each grain is used to
simulate a system of orientation-dependent Weibull
moduli.

3.1. Laminated composites
A lamellar composite of two elastically isotropic mate-
rials is considered. The two layers display the same
thermo-elastic constants, but different Weibull mod-
uli, m = 5 and m = 25. The sample initially in a
stress-free state is loaded under uniaxial tension as
described above. Two loading conditions—parallel
and perpendicular to the lamellae—suffice to model
the anisotropic characteristics of damage evolution.
‘Greased’ grip conditions are applied so the stress sin-
gularity at the corners from fixed grip conditions does
not arise.

The applied strain is incremented up to the critical
value for which fracture occurs. Fig. 6 illustrates the
phase difference of damage accumulation in the cross
laminate loaded sample. The material with m = 5 has
failures distributed throughout, while the material with
m = 25 displays highly correlated damage accumu-
lation. However, because the lower modulus phase is
likely to fail first for similar σ◦, the location of corre-
lated damage in the higher modulus phase is correlated
with location of failures in the lower modulus material.

Figure 6 Damage in a lamellar composite with two different Weibull
moduli (5 (darker gray) and 25).

Figure 7 Distances from subsequent failures—for the entire specimen.
The specimen length width is set equal to 1.

Figure 8 Difference of the distribution of distance of failures for the
specimen (from the previous picture) and that of perfectly random fail-
ures (also illustrated in the top corner).

The correlation between subsequent fracture events can
be analyzed with the distance between first and second
failures. Fig. 7 shows the distribution of distances of
second failure (i.e., the second element failing accord-
ing to the fracture criterion chosen) from the first one,
obtained by repeating the experiment 100 times. The
failures appear not to be correlated because they occur
both in the phase with m = 5 and m = 25. This distri-
bution can be compared with that of a perfectly random
set of failures. Fig. 8 illustrates the difference of the two
distributions: the distribution of distance from failures
in the laminated samples behaves similarly to the ran-
dom case. However, if the failures are divided into two
sets characterized by the material in which they fail,
Fig. 9a is obtained: this graph shows that failures in the
phase with m = 25 are likely to occur one next to the
other.

Moreover, the damage accumulation curve can be
plotted, according to Equation 2. Fig. 9b illustrates that
the damage begins to occur in the phase with Weibull
modulus equal to 5 at relatively low applied strain.
Then, at a critical value of strain, cracks develop in
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Figure 9 (a) Distances from subsequent failures for the two phases. The
specimen length width is set equal to 1. (b) Damage evolution for the
lamellar composite.

the phase with high Weibull modulus, with a marked
increment in the fraction of broken material over a very
narrow range of strain.

This case study can be extended to investigate the ef-
fect of applied load direction with respect to an underly-
ing orthorhombic symmetry for families of constituent
thermoelastic and reliability behavior. For loading per-
pendicular to the lamellae with arbitrary differences
in thermoelastic moduli, the attributed homogeneous
Weibull moduli would be approximately equal to that
of the phase with the largest component.

For the case of loading parallel to the lamellae, the
stresses in each phase scale with that phase’s elastic
stiffness. To study this case, the Young’s moduli are
set to 100 GPa in first (σ◦ = 0.1 GPa) phase and 200
GPa in the second (σ◦ = 0.1 GPa) phase. The dif-
ference in damage character is illustrated in Fig. 10a.
The loading condition is such that the stress is dou-
ble in one phase compared to the other one—failures
occur where the ratio of stress to σ◦ is larger. The corre-
sponding damage parameters for these two cases can be
computed: Fig. 10b illustrates damage evolution, where

Figure 10 (a) Effect of loading direction on damage evolution in a lamel-
lar specimen. Dark gray corresponds to E = 100 GPa, light gray corre-
sponds to E = 200 GPa. (b) Effect of the loading direction on damage
accumulation.

each “step” in the curve corresponds to the opening of
one crack along the lamellae.

Moreover, the layer size provides a microstructural
length scale against which the mesh size can be com-
pared and provides a means to study the mesh size
dependence of computational accuracy. Finite element
grids, with differing refinements, were created for the
same microstructure. The average distance of the sec-
ond element failing from the first one (normalized to
the element length) is investigated as a function of the
number of elements within a lamellar layer. As plotted
in Fig. 11, the distance is affected more by the value
of the Weibull modulus than by the mesh refinement.
This suggests that results are consistent and the numer-
ical convergence is relatively insensitive to the finite
element length as long as there are more than approxi-
mately fifteen elements for any microstructural feature.

3.2. Polycrystalline microstructures
The approach presented in this paper is applicable to
any two-dimensional microstructure and most useful
for those microstructures in which direct calculation of
the stress state is not straightforward. Consider a hetero-
geneous microstructure that is generated by a Voronoi
tessellation of a Poisson point process as a representa-
tive polycrystalline material (Fig. 12). The properties
of each grain can be set independently; here, each grain
is assigned the same elastic constants and σ◦, but a ran-
dom value of the Weibull modulus m, picked from a
uniform distribution m ∈ (5, 25). This case is analyzed
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Figure 11 Mesh refinement effect on the average distance between sub-
sequent failures: number of elements on the specimen width (i.e. the
mesh has n2 elements) vs. average distance of second failure from first.

in order to assess the effect of local probabilities of
failures on the behavior of the complex material.

In order to minimize the effect of finite length of an
element, a mesh was created so that approximately 15
elements spanned an average grain according to the esti-
mate produced in the previous section. The sample was
stressed in tension and the FEM solution was obtained
under plane stress conditions. Until a finite amount of
applied strain is reached, no fracture events occur. As
the applied internal load increases above a certain level,
fracture typically initiates in grains with low Weibull
modulus. Fig. 12 illustrates the damage evolution for
a particular polycrystal. Damage evolves with increas-
ing applied strain nonlinearly. At larger values of ap-
plied strain, damage is produced in grains with higher
Weibull modulus. The cracks apparently follow paths
connecting grains with high Weibull modulus (i.e., with
further increase of load, cracks tend to connect high
Weibull moduli grains).

The fracture behavior of this polycrystal can be ana-
lyzed with Fig. 13 in which the grains are divided in four
groups depending on the value of the Weibull modulus.
As illustrated in Fig. 13a, the distance between subse-
quent failures decrease with increasing Weibull moduli,

Figure 12 Damage evolution in a polycrystal.

thus confirming that cracks tend to create paths along
high Weibull moduli grains conforming to the accumu-
lation illustrated in Fig. 13b.

This model simulates the evolution of fracture pat-
terns in complex microstructures, accounting for stress
relaxation due to microcracking. This is in contrast to
models that treat microstructural elements (e.g., a grain
in a polycrystal or a fiber in a composite) as either intact
or failed.

3.3. Particulate composites
The third class of heterogenous microstructures consid-
ered in this study is that of particulate composites. Ran-
dom microstructures were generated by means of an
algorithm where circular inclusions, with radii picked
randomly from a limited uniform size distribution, were
placed sequentially in a matrix by a Poisson hard-sphere
placement until a specified volume fraction of inclu-
sions was achieved. An example of such a microstruc-
ture is illustrated in Fig. 14. The elastic and reliability
properties of the matrix and of the inclusions are as-
signed independently.

In the first case considered, the matrix and the inclu-
sions have Young moduli of 100 and 400 GPa respec-
tively and the same Weibull moduli (m = 25, σ◦ = 0.1
GPa). Due to the elastic mismatch, an applied load re-
sults in a distribution where stress tends to be larger
in the particles, and thus failures are likely to occur in
the particles. Fig. 15a illustrates the cumulative frac-
tion of elements failing in the matrix and in the in-
clusions, confirming that most cracks develop in the
particles. Fig. 15b illustrates the progression of dam-
age for increasing applied strain: the damage evolves
nonlinearly. Most damage occurs in the particles and
each finite damage increment in the curve corresponds
to the complete failure of a single particle at that applied
strain.

The same microstructure and elastic properties were
examined, but with the particles and matrix assigned to
m = 5. Depending on the particle’s Weibull modulus,
two different behaviors can be observed in Fig. 16. For
m = 25 subsequent failures occur in the same parti-
cle; in the case m = 5 the failures are more randomly
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Figure 13 (a) Distance from subsequent failures (second to first) for a
polycrystal. (b) Damage evolution in a polycrystal

Figure 14 Particulate composite microstructure.

distributed. Distribution of distances for subsequent
failures are illustrated in Fig. 17a: as mentioned, the
failures are correlated for high Weibull modulus, and
are spatially distributed for a low m. Fig. 17b reports
the damage parameter as a function of the applied strain
for the two different cases. The damage is greater with
high Weibull modulus because this corresponds to the
failure of an entire particle.

Figure 15 (a) Fraction of elements failing in the matrix and in the in-
clusions for a particulate microstructure. (b) Damage evolution in a par-
ticulate microstructure (and zoom in the top-left corner).

The effect of volume fraction on the behavior of the
particulate composite is studied by considering four dif-
ferent microstructures with increasing volume fraction
of particles (Ematrix = 100 GPa, Eparticle = 400 GPa).
The length scale of the finite element grid is fixed while
the microstructure is different for each simulation, (i.e.,
by increasing volume fractions with a Poisson point
process). Analyzing the damage behavior of these mi-
crostructures in Fig. 18, the microstructures with higher
volume fraction of hard particles seem to be more sus-
ceptible to damage caused by brittle fracture. Moreover
it can also be observed that larger particles are more
likely to break than smaller ones; in fact experimen-
tal results, i.e., micrographs of damaged composites,
indicate that larger inclusions tend to fracture at lower
loads than smaller inclusions, and this is also confirmed
by other authors by means of theoretical or numerical
models [2, 9, 11, 38].

Nevertheless some larger particles which should have
a higher propensity to crack at relatively low applied
strain may not break due to rupture of neighboring
particles and hence stress redistribution, as pointed
out also in [2]. Thus, the effect of the evolving mi-
crostructural topology on the damage accumulation is
evident.
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Figure 16 Illustration of effect of reliability parameters on the damage progression in the same particulate microstructure.

Figure 17 (a) Frequency plot correlating distance of second failure from
the first one in particulate microstructures. (b) Damage evolution in par-
ticulate microstructures.

4. Discussion and conclusions
In this paper, an approach for the investigation of frac-
ture and damage in brittle materials has been presented.
The damage evolution is simulated by a probabilistic
failure criterion in conjunction with a microstructural
based finite element code (OOF). One practical conse-
quence of this approach is that the finite element model

Figure 18 Damage evolution for different volume fractions of particu-
late phase.

can be constructed from microstructures, i.e., a digi-
tized micrograph, so that arbitrary inclusion patterns,
shapes and sizes of heterogeneities as obtained from ac-
tual images are readily modeled. Adaptive schemes and
mesh refinement strategies are available in order to cap-
ture microstructural details. Microcrack formation and
propagation due to increasing applied load is investi-
gated in arbitrary microstructures of complex materials,
such as polycrystals and composites. The microstruc-
ture is converted into a finite element mesh and, for
the prescribed loading condition, the microstructural
stresses are calculated by the FEM solver. A Monte
Carlo failure criterion based on Weibull statistics is
implemented, and fracture is modeled by a reduction
of stiffness of the broken element perpendicular to the
crack plane and a stress redistribution among neigh-
boring elements. In this way, it is possible to model
continuously changing element topology due to pro-
gressive material failure and crack paths can be ana-
lyzed. The results show that distribution of damage is
strongly affected by local failures probabilities (i.e., the
value of the Weibull modulus m) as well as by stress
concentrations. This means that both the particular mi-
crostructure and the loading conditions play a key role
in the evolution of damage accumulation.
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In particular, polycrystals were investigated in order
to assess the effect of grain properties on the accumu-
lation of microcrack damage. The fracture mechanism
is ruled by the interplay between stress concentrations
and local failure probabilities.

As regards particulate composites microstructures, it
was found that particle size plays the most critical role
in the cracking process. In fact, larger particles tend
to fracture at a lower deformation level than smaller
ones and therefore act as nucleation sites for damage
initiation [2]. Moreover, the volume fraction of particles
plays a significant role. Thus, it can be concluded that
an RVE model that is homogeneous over a region of
a particulate composite should depend on local values
of particle size, inclusion volume fraction as well as
materials properties.

However, it should be noted that this approach has
implicit assumptions that are subject to verification. The
Weibull assumption (the weakest link hypothesis) pre-
sumes that the whole sample fails when the critical con-
dition is reached. In this paper, the Weibull criterion was
applied through a Monte Carlo process for each single
element. Other failure models may prove to be more
appropriate.

Moreover it is assumed that is physically plausible
for macroscopic reliability laws to provide parame-
ters which can be applied discretely to small elements
within a microstructure. As mentioned previously, this
means that the finite element discretization is coarse
enough to average over a distribution of pre-existing
flaws which are very small compared to the character-
istic element size. Since a particular system may have
some variability, the Monte Carlo method will gener-
ate a statistical basis to understand the nature of the
variability and its relation to microstructure. It is worth
noting that other authors adopted a similar approach
based on the Weibull law to characterize the strength of
fibers in composites [41].

The present model is two-dimensional and therefore
situations where three-dimensions are required for nu-
merical prediction, such as crack propagation in a real
composites, are only qualitatively represented by means
of a two-dimensional model. Other authors empha-
sized the importance of 3D microstructural modeling
[10, 11], showing that the predicted damage was more
considerable in 3D compared to 2D approaches. Never-
theless, 2D models are often assumed when describing
the mechanical and fracture behavior of heterogeneous
materials (see for example [29]), and only a few stud-
ies consider 3-D effects [10, 11]. The general agree-
ment between these two-dimensional numerical results
and the experimental ones (e.g., two-dimensional mi-
crographs of damaged composites) indicates that this
model fulfills the role of developing engineering in-
tuition on the effect of microstructure on reliability.
The 2D modeling approach is not seen as a serious
limitation as a design tool; however, three-dimensional
models would be more predictive. Other future devel-
opments could include the analysis of the interfaces and
surfaces of complex and heterogenous materials, for ex-
ample the development of damage by decohesion at the
particle/matrix interface. Other microstructures such as

functionally graded materials (FGMs) have been ana-
lyzed by a similar method and will appear elsewhere.
An experimental validation of the present model would
be desirable; the combined use of experimental inves-
tigations and of numerical simulations is essential to
gain meaningful indications on the material properties.

Moreover, it would be interesting to compare this
model with some formal methods of damage mechan-
ics, e.g., the analytical work of Kachanov [42, 43],
Ladeveze [44–46], Nemat-Nasser and Hori [47].

The results of this work provide a basic insight into
the influence of the microstructure on the mechani-
cal properties, with particular regard to failure mecha-
nisms. This can help the design of the final material mi-
crostructure, with the aim of optimizing the microstruc-
ture itself. Tailored properties could be produced by
clever processing techniques if the role of microstruc-
tural features is understood.

Moreover, the versatility of the OOF code allows the
analysis of real materials microstructures. Therefore
the study of the mechanical and fracture behavior of
heterogenous materials is not limited to the RVE, but the
actual microstructure with all its complex features (e.g.,
shapes, dimensions, positions and volume fraction of
the second phase) may be throughly investigated. The
methods illustrated in this paper also provide the means
to derive homogeneous properties that could be used in
conjunction with the RVE techniques.
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